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The basic physical principles of X-ray Absorption Fine-Structure (XAFS) are presented.
XAFS is an element-specific spectroscopy in which measurements are made by tuning the
X-ray energy at and above a selected core-level binding energy of a specified element. Al-
though XAFS is a well-established technique providing reliable and useful information about
the chemical and physical environment of the probe atom, its requirement for an energy-
tunable X-ray source means it is primarily done with synchrotron radiation sources and
so is somewhat less common than other spectroscopic analytical methods. XAFS spectra
are especially sensitive to the oxidation state and coordination chemistry of the selected
element. In addition, the extended oscillations of the XAFS spectra are sensitive to the dis-
tances, coordination number and species of the atoms immediately surrounding the selected
element. This Extended X-ray Absorption Fine-Structure (EXAFS) is the main focus of
this chapter. As it is element-specific, XAFS places few restrictions on the form of the
sample, and can be used in a variety of systems and bulk physical environments, including
crystals, glasses, liquids, and heterogeneous mixtures. Additionally, XAFS can often be
done on low-concentration elements (typically down to a few ppm), and so has applications
in a wide range of scientific fields, including chemistry, biology, catalysis research, material
science, environmental science, and geology. Special attention in this chapter is given to
the basic concepts used in analysis and modeling of EXAFS spectra.
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1 Introduction

X-ray absorption fine structure (XAFS) refers to the details of how X-rays are absorbed by
an atom at energies near and above the core-level binding energies of that atom. Specifically,
XAFS is the modulation of an atom’s X-ray absorption probability due to the chemical and
physical state of the atom. XAFS spectra are especially sensitive to the formal oxidation
state, coordination chemistry, and the distances, coordination number and species of the
atoms immediately surrounding the selected element. Because of this dependence, XAFS
provides a practical and relatively simple way to determine the chemical state and local
atomic structure for a selected atomic species, and is used routinely in a wide range of
scientific fields, including biology, environmental science, catalysts research, and material
science. Since XAFS is an atomic probe, it places few constraints on the form of the samples
that can be studied, and can be used in a variety of systems and sample environments.

All atoms have core level electrons, and XAFS spectra can be measured for essentially
every element on the periodic table. Importantly, crystallinity is not required for XAFS
measurements, making it one of the few structural probes available for noncrystalline and
highly disordered materials, including solutions. Because X-rays are fairly penetrating in
matter, XAFS is not inherently surface-sensitive, though special measurement techniques
can be applied to enhance its surface sensitivity. Because intense X-ray sources can make
very small beams, XAFS can be done on samples as small as a few square microns. In
addition, many variations on experimental techniques and sample conditions are available
for XAFS, including in situ chemical processes and extreme conditions of temperature
and pressure. XAFS measurements can be made on elements of minority and even trace
abundance in many systems, giving a unique and direct measurement of chemical and
physical state of dilute species in a variety of systems.

X-ray absorption measurements are relatively straightforward, provided one has an in-
tense and energy-tunable source of X-rays. In practice, this usually means the use of
synchrotron radiation, and the history and development of XAFS closely parallels that of
synchrotron sources. Since the characteristics of synchrotron sources and experimental sta-
tion dictate what energy ranges, beam sizes, and intensities are available, this often puts
practical experimental limits on the XAFS measurements that can be done at a particular
station, even if there are few inherent limits on the XAFS technique itself.

Though XAFS measurements can be straightforward, a complete understanding of
XAFS involves a wonderful mixture of modern physics and chemistry and a complete mas-
tery of the data analysis can be somewhat challenging. Though the basic phenomena is
well-understood, an accurate theoretical treatment is fairly involved and, in some respects
still an area of active research. The interpretation and analysis of XAFS is not always
straightforward, though significant progress has been made in both the theoretical and an-
alytical tools for XAFS in the past few decades. Accurate and precise interpretation of
XAFS spectra is routine, if not always trivial for novice experimentalists.

The X-ray absorption spectrum is typically divided into two regimes: X-ray absorp-
tion near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spec-
troscopy (EXAFS). Though the two have the same physical origin, this distinction is con-
venient for the interpretation. XANES is strongly sensitive to formal oxidation state and
coordination chemistry (e.g., octahedral, tetrahedral coordination) of the absorbing atom,
while the EXAFS is used to determine the distances, coordination number, and species of
the neighbors of the absorbing atom.

XAFS is a mature technique, with a literature spanning many decades and many dis-
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ciplines. As a result, several books(Teo, 1986; Koningsberger & Prins, 1988; Bunker,
2010; Calvin, 2013) have been written specifically about XAFS, and one book on X-ray
physics(Als-Nielsen & McMorrow, 2001) that covers XAFS. There have been many chap-
ters and review articles written about XAFS, including early reviews of the fledgling tech-
nique(Stern & Heald, 1983), complete theoretical treatments(Rehr & Albers, 2000), and
reviews focusing on applications in a variety of fields, including mineralogy(Brown et al. ,
1988) and soil science(Kelly et al. , 2008). Earlier review articles articles(Sutton et al. ,
2002; Manceau et al. , 2002) on synchrotron techniques in geochemistry and environmental
science also contain considerable information on EXAFS. In addition, several on-line re-
sources(XAFS.org, 2003; IXAS, 2012) have lengthy tutorials and links to software packages
and documentation for XAFS. It is simply no longer possible or particularly useful to give
a full review of the XAFS literature, even restricting to a single field such as geochemistry
or mineralogy. In this work, the origins and interpretations of XAFS will be introduced,
with a hope of aiding the reader to be able to make high-quality XAFS measurements as
well as process and analyze the data. The emphasis here is particularly on the processing
and analysis of the extended oscillations of the XAFS spectra, as the near-edge portion of
the spectra is covered in more detail elsewhere. This chapter will not make one an expert
in XAFS, but but it should provide a firm foundation for a new practitioner of XAFS. The
above citations are all strongly recommended reading for further insights and different per-
spectives and emphasis. The reader is not expected to have previous experience with XAFS
or X-ray measurements, but some familiarity with advanced undergraduate-level chemistry
or physics and a knowledge of experimental practices and data interpretation will be helpful.
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2 X-Ray Absorption and Fluorescence

X-rays are light with energies ranging from about 500 eV to 500 keV, or wavelengths from
about 25Å to 0.25Å. In this energy regime, light is absorbed by all matter through the
photo-electric effect, in which an X-ray photon is absorbed by an electron in a tightly
bound quantum core level (such as the 1s or 2p level) of an atom (Fig 1).

In order for a particular electronic core level to absorb the X-ray, its binding energy
must be less than the energy of the incident X-ray. If the binding energy is greater than
the energy of the X-ray, the bound electron will not be perturbed from the well-defined
quantum state and will not absorb the X-ray. If the binding energy of the electron is less
than that of the X-ray, the electron may be removed from its quantum level. In this case,
the X-ray is destroyed (that is, absorbed) and any energy in excess of the electronic binding
energy is given to a photo-electron that is ejected from the atom. This process has been
well understood for nearly a century (Einstein received the Nobel Prize for describing this
effect). As we will see, the full implications of this process when applied to molecules,
liquids, and solids will give rise to XAFS.
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2p L2, L3

3s M1
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Figure 1: The photoelectric effect, in which an X-ray is absorbed by a atom and
a core-level electron is promoted out of the atom, creating a photo-electron and
leaving behind a hole in the core electron level.

When discussing X-ray absorption, we are primarily concerned with the absorption
coefficient, µ which gives the probability that X-rays will be absorbed according to the
Beer-Lambert Law:

I = I0e
−µt (1)

where I0 is the X-ray intensity incident on a sample, t is the sample thickness, and I is
the intensity transmitted through the sample, as shown in Fig 2. For X-rays of sufficiently
low intensity, the X-ray intensity is proportional to the number of X-ray photons. We will
ignore any non-linear or strong field effects here, an consider only the case of absorption by
an otherwise unperturbed atom.
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I0 I

t

Figure 2: X-ray absorption and the Beer-Lambert law: An incident beam of
monochromatic X-rays of intensity I0 passes through a sample of thickness t,
and the transmitted beam has intensity I. The absorption coefficient µ is given
by the Beer-Lambert law: I = I0 exp [−µt].

At most X-ray energies, the absorption coefficient µ is a smooth function of energy, with
a value that depends on the sample density ρ, the atomic number Z, atomic mass A, and
the X-ray energy E roughly as

µ ≈ ρZ4

AE3
. (2)

The strong dependence of µ on both Z and E is a fundamental property of X-rays, and is
the key to why X-ray absorption is useful for medical and other imaging techniques such
as X-ray computed tomography. Fig 3 shows the energy-dependence of µ/ρ for O, Fe, Cd,
and Pb in the normal X-ray regime of 1 to 100 keV. The values span several orders of
magnitude, so that good contrast between different materials can be achieved for nearly
any sample thickness and concentrations by adjusting the X-ray energy.

Figure 3: The absorption cross-section µ/ρ for several elements over the X-ray
energy range of 1 to 100 keV. Notice that there are at least 5 orders of magnitude
in variation in µ/ρ, and that in addition to the strong energy dependence, there
are also sharp jumps in cross-section corresponding to the core-level binding
energies of the atoms.

When the incident X-ray has an energy equal to that of the binding energy of a core-
level electron, there is a sharp rise in absorption: an absorption edge corresponding to
the promotion of the core level to the continuum. For XAFS, we are concerned with the
energy dependence of µ at energies near and just above these absorption edges. An XAFS
measurement is then simply a measure of the energy dependence of µ at and above the
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binding energy of a known core level of a known atomic species. Since every atom has core-
level electrons with well-defined binding energies, we can select the element to probe by
tuning the X-ray energy to an appropriate absorption edge. These absorption edge energies
are well-known (usually to within a tenth of percent), and tabulated. The edge energies
vary with atomic number approximately as Z2, and both K and L levels can be used in
the hard X-ray regime (in addition, M edges can be for heavy elements in the soft X-ray
regime), which allows most elements to be probed by XAFS with X-ray energies between 4
and 35 keV, as shown in Fig 4. Because the element of interest is chosen in the experiment,
XAFS is element-specific.

Figure 4: The energies for the X-ray K and LIII absorption edges as a function
of atomic number Z. The energies follow E ∼ Z2, and all elements with Z > 20
(Ca) have an X-ray edge above 4 keV.

Following an absorption event, the atom is said to be in an excited state, with one of
the core electron levels left empty (a so-called core hole), and a photo-electron emitted from
the atom. The excited state will eventually decay (typically within a few femtoseconds) of
the absorption event. Though this decay does not affect the X-ray absorption process, it is
important for the discussion below.

There are two main mechanisms for the decay of the excited atomic state following an
X-ray absorption event. The first of these is X-ray fluorescence (Fig 5), in which a higher
energy electron core-level electron fills the deeper core hole, ejecting an X-ray of well-defined
energy. The fluorescence energies emitted in this way are characteristic of the atom, and
can be used to identify the atoms in a system, and to quantify their concentrations. For
example, an L shell electron dropping into the K level gives the Kα fluorescence line.

The second process for de-excitation of the core hole is the Auger Effect, in which
an electron drops from a higher electron level and a second electron is emitted into the
continuum (and possibly even out of the sample). In either case, a cascade of subsequent
emissions will fill the newly formed, less tightly bound hole until the atom is fully relaxed.
Either of these processes can be used to measure the absorption coefficient µ, though the
use of fluorescence is somewhat more common. In the hard X-ray regime (> 10 keV), X-
ray fluorescence is more likely to occur than Auger emission, but for lower energy X-ray
absorption, Auger processes dominate.

XAFS can be measured by directly measure the intensity of X-rays transmitted through
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Figure 5: The excited atomic state will decay either by X-ray fluorescence or
the Auger effect. In either case, an electron is moved from a less tightly bound
orbital to the empty core level, and the energy difference between these levels
is given to the emitted particle (X-ray or electron). The emission energies have
precise values that are characteristic for each atom, and can be used to identify
the absorbing atom. Though the probability of whether the decay occurs by flu-
orescence or Auger emission depends on the atomic number Z and energy-level,
the probability of emission is directly proportional to the absorption probability,
and so can be used to measure EXAFS and XANES.

a sample, shown in Fig 2, or by monitoring a secondary emission such as x-ray fluorescence,
or Auger electrons, or in some cases even by monitoring visible light emitted by a sample
as part of the cascade of decay events. We will return to the details of the measurements
later. For now it is enough to say that we can measure the energy dependence of the X-ray
absorption coefficient µ(E) either in transmission as

µ(E) = ln(I0/I) (3)

or in X-ray fluorescence (or Auger emission) as

µ(E) ∝ If/I0 (4)

where If is the monitored intensity of a fluorescence line (or electron emission) associated
with the absorption process.

A typical XAFS spectrum (measured in the transmission geometry for a powder of FeO)
is shown in Fig 6. The sharp rise in µ(E) due to the Fe 1s electron level (near 7112 eV) is
clearly visible in the spectrum, as are the oscillations in µ(E) that continue well past the
edge. As mentioned in the introduction, the XAFS is generally thought of in two distinct
portions: the near-edge spectra (XANES) – typically within 30 eV of the main absorption
edge, and the extended fine-structure (EXAFS), which can continue for a few keV past
the edge. As we shall, the basic physical description of these two regimes is the same,
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but some important approximations and limits allow us to interpret the extended portion
of the spectrum in a simpler and more quantitative way than is currently possible for the
near-edge spectra.

Figure 6: XAFS µ(E) for the Fe K edge of FeO, showing the near-edge (XANES)
region and the extended fine structure (EXAFS).

For the EXAFS, we are interested in the oscillations well above the absorption edge,
and define the EXAFS fine-structure function χ(E), as

χ(E) =
µ(E)− µ0(E)

∆µ
(5)

where µ(E) is the measured absorption coefficient, µ0(E) is a smooth background function
representing the absorption of an isolated atom, and ∆µ is the measured jump in the
absorption µ(E) at the threshold energy.

Figure 7: Isolated EXAFS for the Fe K edge of FeO, shown weighted by k2 (left) to
emphasize the high-k portion of the spectrum, and the Fourier transform of the k-weighted
XAFS, χ(R) (right), showing the contribution from Fe-O and Fe-Fe neighbors.

As we will see, EXAFS is best understood in terms of the wave behavior of the photo-
electron created in the absorption process. Because of this, it is common to convert the X-ray
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energy to k, the wave number of the photo-electron, which has dimensions of 1/distance
and is defined as

k =

√
2m(E − E0)

h̄2 (6)

where E0 is the absorption edge energy, m is the electron mass, and h̄ is Planck’s constant.
The primary quantity for EXAFS is then χ(k), the isolated variation in absorption coefficient
as a function of photo-electron wave number, and χ(k) is often referred to simply as “the
EXAFS”. The EXAFS extracted from the Fe K-edge for FeO is shown in Fig 7 (left). The
EXAFS is clearly oscillatory, and also decays quickly with k. To emphasize the oscillations,
χ(k) is often multiplied by a power of k typically k2 or k3 for display, as is done for the plot
in Fig 7.

The different frequencies apparent in the oscillations in χ(k) correspond to different near-
neighbor coordination shells. This can be see most clearly by applying a Fourier transform
to the data, converting the data from depending on wavenumber k to depending on distance
R. As seen in the right-hand panel of Fig 7, the oscillations present in the EXAFS χ(k))
give rather well-defined peaks as a function of R, corresponding to the distance from the
absorbing atom to its near neighbors.

A remarkable feature of EXAFS is that the contributions to the EXAFS from scattering
from different neighboring atoms can be described by a relatively straightforward EXAFS
Equation, a simplified form of which is

χ(k) =
∑

j

Njfj(k)e−2k2σ2
j

kRj
2 sin[2kRj + δj(k)]. (7)

Here f(k) and δ(k) are scattering properties of the photo-electron emitted in the absorption
process by the atoms neighboring the excited atom, N is the number of neighboring atoms,
R is the distance to the neighboring atom, and σ2 is the disorder in the neighbor distance.
Though slightly complicated, the EXAFS equation is simple enough to enable us to model
EXAFS data reliably, in that we can determine N , R, and σ2 once we know the scattering
amplitude f(k) and phase-shifts δ(k). Furthermore, because these scattering factors depend
on the Z of the neighboring atom, EXAFS is also sensitive to the atomic species of the
neighboring atom.
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3 A Simple Theoretical Description of XAFS

In this section, a simple physical description of the XAFS process and the origin of the
EXAFS Equation will be given. Other useful treatments on a similar level can be found
in other places(Stern, 1988; Rehr & Albers, 2000) as well. As in the previous section , we
start with the photoelectric effect, now shown in Fig 8, in which an X-ray of energy E is
absorbed by a core-level electron of a particular atom with binding energy E0. Any energy
from the X-ray in excess of this binding energy is given to a photo-electron that propagates
away from the absorbing atom. We will treat the photo-electron as a wave, noting that its
wavelength is proportional to 1/

√
E − E0. It is most common to describe the photo-electron

by its wavenumber , k = 2π/λ, given in Eq. 6.

absorbing atom
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E
n
er
g
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µ

λ ∼ 1/
√

(E − E0)

photo-electron

X-ray

1s core level

Figure 8: Cartoon of X-ray absorption through the photoelectric process. As
the energy of the X-rays is increased to just above the energy of a tightly bound
core electron level, E0, the probability of absorption has a sharp rise – an edge
jump. In the absorption process, the tightly bound core-level is destroyed, and a
photo-electron is created. The photo-electron travels as a wave with wavelength
proportional to 1/

√
(E − E0).

The absorption of the X-ray by the particular core electron level requires there to be
an available quantum state for the ejected photo-electron to go to. If no suitable state is
available, there will be no absorption from that core level. At X-ray energies below the 1s
binding energy (for example, below 7.1 keV for iron) the 1s electron could only be promoted
to a valence electron level below the Fermi level – there is simply not enough energy to put
the electron into the conduction band. Since all the valence levels are filled, there is no
state for the 1s electron to fill, and so there is no absorption from that core-level. Of
course, a sample is not transparent to X-rays with energies below the 1s binding level, as
the higher level electrons can be promoted into the continuum, but there is a sharp jump
in the probability of absorption as the X-ray energy is increased above a core level binding
energy. In fact, these binding levels are often referred to as absorption edges due to this
strong increase in absorption probability.

It should be noted that the quantum state that the photo-electron occupies has not
only the right energy, but also the right angular momentum. For photo-electric absorption,
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the angular momentum number must change by 1, so that an s core-level is excited into a
p state, while a p core-level can be excited into either an s or d level. This is important
for a detailed, quantitative description of the XAFS, but is not crucial to basic discussion
of XAFS here, as we are generally dealing with energies far above the continuum which
have large density of states. On the other hand, the momentum state can be extremely
important when considering XANES, the near-edge portion of the spectra, as the available
energy states of the unfilled anti-bonding orbitals still have well-defined and specific angular
momentum states above the continuum level.

absorbing atom scattering atom
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λ ∼ 1/
√
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photo-electron

X-ray

1s core level

Figure 9: XAFS occurs because the photo-electron can scatter from a neigh-
boring atom. The scattered photo-electron can return to the absorbing atom,
modulating the amplitude of the photo-electron wave-function at the absorb-
ing atom. This in turn modulates the absorption coefficient µ(E), causing the
EXAFS.

The picture above described absorption for an isolated atom. When a neighboring
atom is included in the picture (Fig 9), the photo-electron can scatter from the electrons
of this neighboring atom, and some part of the scattered photo-electron can return to the
absorbing atom. Of course, the simple one-dimensional picture shown above suggests that
the probability of scattering the photo-electron by the neighboring atom is quite large. In
a real, three dimensional sample, the photo-electron wavefunction spreads radially out and
has a lower probability of scattering from the electrons in the neighboring atoms.

The important point is that some portion of the photo-electron wavefunction is scattered
from the neighboring atom, and returns to the absorbing atom, all in a single coherent
quantum state. Since the absorption coefficient depends on whether there is an available,
unfilled electronic state at the location of the atom and at the appropriate energy (and
momentum), the presence of the photo-electron scattered back from the neighboring atom
will alter the absorption coefficient: This is the origin of XAFS.

3.1 A rough explanation of the EXAFS equation

We’ll now spend some effort developing the standard EXAFS equation using a slightly more
formal description of this simple physical picture above, but still somewhat less rigorous
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than a full-blown quantum mechanical description. The goal here is to describe enough of
the basic physics to identify where the different components of the EXAFS equation arise
from, and so what they mean for use in the analysis of spectra.

Since X-ray absorption is a transition between two quantum states (from an initial state
with an X-ray, a core electron, and no photo-electron to a final state with no X-ray, a core
hole, and a photo-electron), we describe µ(E) with Fermi’s Golden Rule:

µ(E) ∝ |〈i|H|f〉|2 (8)

where 〈i| represents the initial state (an X-ray, a core electron, and no photo-electron),
|f〉 is the final state (no X-ray, a core-hole, and a photo-electron), and H is the interaction
term, which we’ll come back to shortly. Since the core-level electron is very tightly bound to
the absorbing atom, the initial state will not be altered by the presence of the neighboring
atom, at least to first approximation. The final state, on the other hand, will be affected
by the neighboring atom because the photo-electron will be able to scatter from it. If we
expand |f〉 into two pieces, one that is the “bare atom” portion (|f0〉), and one that is the
effect of the neighboring atom (|∆f〉) as

|f〉 = |f0〉+ |∆f〉, (9)

we can then expand Eq. 8 to

µ(E) ∝ |〈i|H|f0〉|2
[
1 + 〈i|H|∆f〉 〈f0|H|i〉∗

|〈i|H|f0〉|2
+ C.C

]
(10)

where C.C. means complex conjugate. We’ve arranged the terms here so that this expression
resembles a slight variation on our previous relationship between µ(E) and χ(E) in Eq. 5,

µ(E) = µ0(E)[1 + χ(E)]. (11)

where we’re allowing the ∆µ0 in Eq. 5 to be the energy-dependent µ0(E) . We can now
assign µ0 = |〈i|H|f0〉|2 as the “bare atom absorption”, which depends only on the absorbing
atom – as if the neighboring atom wasn’t even there. We can also see that the fine-structure
χ will be proportional to the term with |∆f〉:

χ(E) ∝ 〈i|H|∆f〉. (12)

which indicates that the EXAFS is due to the interaction of the scattered portion of the
photo-electron and the initial absorbing atom.

We can work this term out as an integral equation fairly easily, if approximately. The
interaction term H represents the process of changing between two energy, momentum
states. In quantum radiation theory, the interaction term needed is the p·A term, where A
is the quantized vector potential (there is also an A·A term, but this does not contribute
to absorption). For the purposes here, this reduces to a term that is proportional to eikr.
The initial state is a tightly bound core-level, which we can approximate by a delta function
(a 1s level for atomic number Z extends to around a0/Z, where a0 is the Bohr radius of
≈ 0.529 Å, so this is a good approximation for heavy elements, but less good for very light
elements). The change in final state is just the wave-function of the scattered photo-electron,
ψscatter(r). Putting these terms together gives a simple expression for the EXAFS:

χ(E) ∝
∫
drδ(r)eikrψscatter(r) = ψscatter(0). (13)

In words, this simply states the physical picture shown in Fig 9:
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Figure 10: Functional forms for f(k) (left) and δ(k) (right) for O, Fe, and Pb showing the
dependence of these terms on atomic number Z. The variations in functional form allow Z
to be determined (±5 or so) from analysis of the EXAFS.

The EXAFS χ(E) is proportional to the amplitude of
the scattered photo-electron at the absorbing atom.

We can now evaluate the amplitude of the scattered photo-electron at the absorbing
atom to get the EXAFS equation. Using the simple physical picture from Fig 9, we can
describe the outgoing photo-electron wave-function ψ(k, r) traveling as a spherical wave,

ψ(k, r) =
eikr

kr
, (14)

traveling a distance R to the neighboring atom, then scattering from a neighbor atom, and
traveling as a spherical wave a distance R back to the absorbing atom. We simply multiply
all these factors together to get

χ(k) ∝ ψscatter(k, r = 0) =
eikR

kR
[2kf(k)eiδ(k)]

eikR

kR
+ C.C. (15)

where f(k) and δ(k) are scattering properties of the neighboring atom, and C.C. means
complex conjugate. As mentioned before, these scattering factors depend on the Z of the
neighboring atom, as illustrated in Fig 10 for a few elements. Combining these terms in
and using the complex conjugate to make sure we end up with a real function, we get

χ(k) =
f(k)

kR2
sin[2kR+ δ(k)] (16)

which looks much like the standard EXAFS equation. For mathematical convenience, the
EXAFS Equation is sometimes written with the sin term replaced with the imaginary part
of an exponential:

χ(k) =
f(k)

kR2
Im[ei[2kR+δ(k)]] (17)

we’ll use this form on occasion.
The treatment to get to Eq. 16 was for one pair of absorbing atom and scattering atom,

but for a real measurement we’ll average over billions of X-ray absorption events and so
atom pairs. Even for neighboring atoms of the same type, the thermal and static disorder
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in the bond distances will give a range of distances that will affect the XAFS. As a first
approximation, the bonding environment and disorder will change the XAFS equation from
Eq. 16 to

χ(k) =
Ne−2k2σ2

f(k)

kR2
sin[2kR+ δ(k)] (18)

where N is the coordination number and σ2 is the mean-square-displacement in the bond
distance R. We’ll return to this topic later.

Of course, real systems usually have more that one type of neighboring atom around
a particular absorbing atom. This is easily accommodated in the XAFS formalism, as the
measured XAFS will simply be a sum of the contributions from each scattering atom type
or coordination shell :

χ(k) =
∑

j

Nje
−2k2σ2

j fj(k)

kR2
j

sin[2kRj + δj(k)] (19)

where j represents the individual coordination shell of identical atoms at approximately the
same distance from the central atom. In principle there can be many such shells, but as
shells of similar Z become close enough (say, within a 0.05 Å of each other), they become
difficult to distinguish from one another.

The explanation so far of what goes into the EXAFS equation gives the most salient
features of the physical picture for EXAFS. but ignores many nuances. In order to be
able to quantitatively analyze EXAFS in real systems, we’ll need to cover some of these
subtleties, giving four main points to discuss. These are 1) the finite photo-electron mean-
free-path, 2) the relaxation due to the passive (non-core) electrons of the excited atom, 3)
multiple-scattering of the photo-electron, and 4) a more detailed treatment of structural
and thermal disorder.

3.2 λ(k): The inelastic mean-free-path

Figure 11: The photo-electron mean-free-path for XAFS λ(k), representing how
far the photo-electron can travel and still participate in the XAFS. This term
accounts for both the inelastic scattering of the photo-electron, and the finite
lifetime of the core-hole.

The most significant approximation we made above was to assert that the outgoing
photo-electron went out as a spherical wave, as given in Eq. 14. In doing so, we ne-
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glected the fact that the photo-electron can also scatter inelastically from other sources –
other conduction electrons, phonons, and so on. In order to participate in the XAFS, the
photo-electron has to scatter from the neighboring atom and return to the absorbing atom
elastically (that is, at the same energy) as the outgoing photo-electron. In addition, the
scattered portion of the photo-electron has to make it back to the absorbing atom before the
excited state decays (that is, before the core-hole is filled through the Auger or fluorescence
process). To account for both the inelastic scattering and the finite core-hole lifetime, we
can use a damped spherical wave:

ψ(k, r) =
eikre−r/λ(k)

kr
, (20)

for the photo-electron wave-function in place of the spherical wave of Eq. 14. Here, λ is
the mean free path of the photo-electron, representing how far it can typically travel before
scattering inelastically or before the core-hole is filled. The core-hole lifetime is on the
order of 10−15 s, depending somewhat on the energy of the core-level. The mean-free-path
is typically 5 to 30 Å and varies with k with a fairly universal dependence on k, shown in
Fig 11. Including this λ(k), the EXAFS equation becomes

χ(k) =
∑

j

Nje
−2k2σ2

j e−2Rj/λ(k)fj(k)

kR2
j

sin[2kRj + δj(k)] (21)

It is the finite size of λ, as well as the 1/R2 term (which also originates from the wavefunction
of the outgoing photo-electron) in the EXAFS equation that shows EXAFS to be a local
probe, insensitive to atomic structure beyond 10 Å or so.

As an aside, we note that it is possible to treat the losses that are described by λ(k) as
a complex wavenumber, so that k becomes p = k + i/λ, and the EXAFS Equation can be
written with p instead of k. This reflects the common usage in the theoretical condensed
matter physics literature that the photo-electron energy is complex, and so includes the
effects of the mean-free-path not only in a e−2R/λ term, but also in the disorder terms,
which can be important in some analyses. This can be incorporated into quantitative
analysis tools, but is beyond the scope of the present work, so we will continue to use the
form of the EXAFS Equation above, with the explicit λ term.

3.3 S2
0 : intrinsic losses

A second approximation we made in the description above was to ignore the relaxation due
to the other electrons in the excited atom. That is, our “initial state” and “final state”
above should have been for the entire atom, but we considered only the core-level electron.
Writing |ΦZ−1

0 〉 for the remaining Z − 1 electrons in unexcited atom, and 〈ΦZ−1
f | for the

Z − 1 electrons in the excited atoms, we end up with a factor of

S2
0 = |〈ΦZ−1

f |ΦZ−1
0 〉|2 (22)

that can be placed in front of the EXAFS equation. Though recent research has suggested
that S2

0 may have some k dependence, especially at low k, it is usually interpreted simply
as a constant value, so that the EXAFS equation becomes

χ(k) =
∑

j

S2
0Nje

−2k2σ2
j e−2Rj/λ(k)fj(k)

kR2
j

sin[2kRj + δj(k)] (23)
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which is the final form of the EXAFS equation that we will use for analysis.
S2

0 is assumed to be constant, and generally found to be 0.7 < S2
0 < 1.0. By far the

biggest consequence of this is that this factor is completely correlated with N in the EXAFS
equation. This fact, along with the data reduction complication discussed later that the
edge step ∆µ in Eq. 5 is challenging to determine experimentally, makes absolute values for
the coordination number N difficult to determine with high accuracy.

3.4 Multiple scattering of the photo-electron

Single Scattering

Triangle Paths

Focused Multiple Scattering

Figure 12: Multiple scattering paths for the photo-electron. While single-
scattering paths generally dominate most EXAFS spectra, multiple scattering
paths can give important contributions, especially in well-ordered crystalline
materials. Fortunately, these terms can be included into the standard EXAFS
formalism.

So far the treatment of EXAFS has implied that the photo-electron always scatters
from one neighboring atom and returns to the absorber. In fact, the photo-electron can
scatter from more than one neighboring atom, making a more convoluted scattering path
than simply to one scattering atom and back. Examples of the more important types of
multiple scattering paths are illustrated in Fig 12.

Multiple scattering paths can give important contributions for EXAFS, especially be-
yond the first coordination shell, and are nearly always important for XANES. In gen-
eral, most first-shell analysis of EXAFS is not strongly affected by multiple scattering, but
second-shell analysis can be, and shells beyond the second are almost always complicated by
multiple-scattering paths. For highly-ordered crystalline materials, focused linear multiple
scattering paths, as shown Fig 12 can be particularly important, and neglecting them in an
analysis can give erroneous results.

Though the details of the calculations are beyond the scope of this work (Rehr & Albers,
2000), accounting for multiple scattering formally in the EXAFS equation is conceptually
quite easy. We can simply change the meaning of the sum in Eq. 19 to be a sum over
scattering paths, including multiple scattering path, instead of being a sum over coordination
shells. We also have to change our interpretation of R from “interatomic distance” to “half
path length”. In addition, our scattering amplitudes f(k) and phase-shifts δ(k) now need
to include the contribution from each scattering atom in the path, so that the term in
the EXAFS equation can be said to be effective scattering amplitudes and phase-shifts.
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Unfortunately, the existence of multiple scattering means that the number of paths needed
to properly account for an EXAFS spectra grows quickly (exponentially) with path distance.
This puts a practical limit on our ability to fully interpret EXAFS spectra from completely
unknown systems.

3.5 Disorder terms and g(R)

We gave a simple description of disorder above, using Ne−2k2σ2
in the EXAFS equation,

where N is the coordination number and σ2 is the mean-square displacement of the set
of interatomic distances R sampled by an EXAFS measurement. As noted above, the
core-hole lifetime is typically in the femtosecond range. Since thermal vibrations are on the
picosecond time-scale, each x-ray absorbed in an EXAFS measurement gives a “snapshot” of
the structure around 1 randomly selected absorbing atom in the sample, and the neighboring
atoms will be essentially frozen in some configuration. Building up a full spectrum will
result in a “blurry picture” due to the addition of many (often billions) of these snapshots.
This has the important consequence that a single EXAFS measurement cannot distinguish
thermal disorder due to atomic vibrations from static disorder.

An EXAFS measurement is then a sampling of the configuration of atoms around the
average absorbing atom. This configuration is called the Partial Pair Distribution function,
g(R), which gives the probability that an atom is found a distance R away from an atom
of the selected type. Pair distribution functions are found from many structural probes
(notably scattering techniques), but the Partial aspect is unique to EXAFS and other
element-specific probes. EXAFS is sensitive only to the pairs of atoms including that
absorbing atom. Thus while scattering can give very accurate measures of the total pair
distribution function, EXAFS is particularly useful for looking at low concentration elements
in complex systems.

To better account for the sampling of g(R), we should replace our σ2 term with an
integral over all absorbing atoms, as with (using a simplified form of the EXAFS Equation in
exponential notation and recalling that k might be replaced by p, the complex wavenumber
to account for the mean-free-path λ(k)):

χ(k) =

〈∑

j

fj(k)ei2kRj+δj(k)

kR2
j

〉
(24)

where the angle brackets mean averaging over the distribution function:

〈x〉 =

∫
dRx g(R)/

∫
dR g(R)

There are a few different approaches that can be used for modeling g(R) in EXAFS. First,
one can ask what the principal moments of g(R) might be. Recognizing that ei2kR term (or
sin(2kR) term) is the most sensitive part to small changes in R, and pulling out the other
terms, we have

χ(k) =
∑

j

fj(k)
eiδj(k)

kR2
j

〈
ei2kRj

〉
(25)

This average of an exponential term can be described by the cumulants of the distribution
g(R), as 〈

ei2kR
〉

= exp

[ ∞∑

n=1

(2ik)n

n!
Cn

]
.
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where the coefficients Cn are the cumulants. The cumulants of a distribution can be related
to the more familiar moments of the distribution. The lowest order cumulants are

C1 = 〈r〉
C2 = 〈r2〉 − 〈r〉2

C3 = 〈r3〉 − 3〈r2〉〈r〉+ 2〈r〉3

C4 = 〈r4〉 − 3〈r2〉2 − 4〈r3〉〈r〉+ 12〈r2〉〈r〉2 − 6〈r〉4

where r = R−R0 and R0 is the mean R value of the distribution. C1 is then simply a shift
in centroid, and C2 is the mean-square-displacement, σ2. C3 and C4 measure the skewness
and kurtosis for the distribution, and are 0 for a Gaussian distribution. Because the low
order terms in the cumulant expansion represent a small modification to the Gaussian
approximation and can be readily applied to any spectrum, it is included in many analyses
codes and discussed widely in the EXAFS literature. The skewness term, C3, is sometimes
found to be important in analysis of moderately disordered systems.

Another approach to modeling complex disorder is to parametrize g(R) by some func-
tional form and use this parametrization in the EXAFS Equation. This can be done either
analytically by putting in a functional form for g(R)(Filipponi et al. , 1995), or by building
a histogram with weights given by the parametrized g(R). This approach can be readily
done with existing analysis tools, and can give noticeably better results than the cumulant
expansion for very high disorder. For some problems, a more sophisticated analysis using
a Monte Carlo approach of calculating the EXAFS for a large set of atomic clusters can
be useful. For example, atomic configurations from a series of molecular dynamics simula-
tions may be used to predict EXAFS spectra including complex configurations and disorder.
Such work can be computationally expensive, but can also give additional insight into the
interactions between atoms and molecules in complex systems. We’ll continue to use N
and σ2 as the normal form of the EXAFS Equation, but will remember that these more
complex descriptions of the distribution of atoms are possible and that we are not limited
to studying well-behaved systems with Gaussian distributions.

3.6 Discussion

We’ve used a simple physical picture of photo-electron scattering to develop the EXAFS
equation that we can use in the quantitative analysis of EXAFS spectra,

χ(k) =
∑

j

S2
0Nje

−2k2σ2
j e−2Rj/λ(k)fj(k)

kR2
j

sin[2kRj + δj(k)]. (26)

From this, our final version of the EXAFS equation, we can draw a few physical conclusions
about XAFS. First, because of the λ(k) term and the R−2 term, XAFS is seen to be an
inherently local probe, not able to see much further than 5 Å or so from the absorbing
atom. Second, the XAFS oscillations consist of different frequencies that correspond to
the different distances of atomic shells. This will lead us to use Fourier transforms in the
analysis. Finally, in order to extract the distances and coordination numbers, we need to
have accurate values for the scattering amplitude and phase-shifts f(k) and δ(k) from the
neighboring atoms.

This last point here – the need for accurate scattering amplitude and phase-shifts – has
been a crucial issue in the field of EXAFS. Though early attempts to calculate the terms were
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qualitatively successful and instructive, they were generally not accurate enough to be used
in analysis. In the earliest EXAFS analyses, these factors were most often determined from
experimental spectra in which the near-neighbor distances and species were known. Such
experimental standards can be quite accurate, but are generally restricted to first neighbor
shell. Since the 1990s, calculations of f(k) and δ(k) have become more accurate and readily
available, and use of experimental standards in EXAFS analysis is now somewhat rare,
and restricted to studies of small changes in distances of fairly well-characterized systems.
Calculated scattering factors are not without problems, but they have been shown numerous
times to be accurate enough to be used in real analysis, and in some cases are more accurate
than experimentally derived scattering factors. The calculated factors are not restricted to
the first shell, and can account for multiple-scattering of the photo-electron. In section ??,
we’ll use calculations of f(k) and δ(k) from feff to model real data.
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4 XAFS Measurements: Transmission and Fluorescence

XAFS requires a very good measure of µ(E). Since the XAFS is a fairly small modulation
of the total absorption, a fairly precise and accurate measurement of µ(E) – typically to
10−3 – is required. Statistical errors in µ(E) due to insufficient count rates in intensities
are rarely the limiting factor for most XAFS measurements, and can generally be overcome
by counting longer. On the other hand, systematic errors in µ(E) can degrade or even
destroy the XAFS, and are more difficult to eliminate. Fortunately, if care is taken in
sample preparation, setting up the measurement system, and alignment of the sample in
the beam, it is usually not too difficult to get good XAFS measurements.

A sketch of the basic experimental layout in Fig 13, showing a monochromatic beam of
X-rays striking a sample and the intensities of the incident, transmitted, and emitted X-ray
beams being measured. From this, it can be seen that the main experimental challenges are
1) getting an X-ray source that can be reliably and precisely tuned to select a single X-ray
energy, and 2) high-quality detectors of X-ray intensity. For most modern experiments, the
X-ray source is a synchrotron radiation source, which provides a highly collimated beam of
X-rays with a broad range of energies. A particular energy is selected with a double crystal
monochromator, which consists of two parallel nearly perfect crystals, typically silicon.
The first crystal is centered in the incident X-ray beam from the source and rotated to a
particular angle so as to reflect a particular energy by X-ray diffraction following Bragg’s
law. By using near-perfect crystals, the diffracted beam is very sharply defined in angle and
so also has a very narrow energy range, and the reflectivity is near unity. The second crystal,
with the same lattice spacing, is rotated together with the first crystal, and positioned to
intercept the diffracted beam and re-diffract so that it is parallel to the original X-ray beam,
though typically offset vertically from it. Such a monochromator allows a wide energy range
of monochromatic X-rays to be selected simply by rotating a single axis, and a widely used
at synchrotron beamlines, and especially at beamlines designed for XAFS measurements.

X-ray source
slits

slits

I0 I

If

monochromator

sample

Figure 13: Sketch of an XAFS Experiment. An X-ray source, typically using
synchrotron radiation, produces a collimated beam of x-rays with a broad energy
spectrum. These X-rays are energy-selected by a slit and monochromator. The
incident X-ray intensity, I0, is sampled. XAFS can be recorded by measuring
the intensity transmitted through the sample or by measuring the intensity of
a secondary emission – typically X-ray fluorescence or Auger electrons resulting
from the X-ray absorption. The X-ray energy is swept through and above the
electron binding energy for a particular energy level of the element of interest.

The principle characteristics of a monochromator that are important for XAFS are the
energy resolution, the reproducibility, and the stability of the monochromator. Energy
resolutions of ≈ 1 eV at 10 keV are readily achieved with silicon monochromators using the
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Si(111) reflection, and are sufficient for most XAFS measurements. Higher resolution can
be achieved by using a higher order reflection, such as Si(220) or Si(311), but this often
comes at a significant loss of intensity. In addition, the angular spread of the incident
X-ray beam from the source can contribute to the energy resolution, and many beamlines
employ a reflective mirror that can be curved slightly to collimate the beam before the
monochromator to improve resolution. While poor energy resolution can be detrimental to
XAFS measurements, and especially for XANES measurements, most existing beamlines
have resolution sufficient for good XAFS measurements.

Stability and reproducibility of monochromators is sometimes challenging, as the angular
precisions of monochromators needed for XAFS are typically on the order of 10−4 degrees,
so that a very small change in Bragg angle corresponds to a substantial energy shift. Very
high quality rotation stages can essentially eliminate such drifts, but may not be installed
at all beamlines. In addition, small temperature drifts of the monochromator can cause
energy drifts, as the lattice constant of the crystal changes. Stabilizing the temperature of
the monochromator is very important, but can be challenging as the power in the white
X-ray beam from a modern synchrotron source can easily exceed 1 kW in a few square
millimeters. For the most part, these issues are ones of beamline and monochromator
design and operation, generally solved by the beamline, and are not a significant problem
at modern beamlines designed for XAFS measurements. Still, these issues are worth keeping
in mind when assessing XAFS data.

Despite their name, monochromators based on Bragg diffraction do not select only one
energy (or color) of light, but also certain harmonics (integer multiplies) of that energy.
While these higher energies will be far above the absorption edge, and so not be absorbed
efficiently by the sample, they can cause subtle problems with the data that can be hard
to diagnose or correct afterward. These include sharp changes or glitches in intensity at
particular energies, and unexpectedly large noise in the data. There are two main strategies
for removing harmonics. The first is to slightly misalign or “de-tune” the two crystals of the
monochromator. This will reduce the transmitted intensity of the higher-energy harmonics
much more than it reduces the intensity of the fundamental beam. De-tuning in this way
can be done dynamically, often by putting a small piezo-electric crystal on the second
monochromator crystal to allow fine motions to slightly misalign the two crystals. The
second method for removing harmonics is to put a reflective X-ray mirror in the beam
so that it reflects the fundamental beam but not the higher energy harmonics. Such a
harmonic-rejection mirror is generally more efficient at removing the higher harmonics than
de-tuning the monochromator crystals. Ideally, both of these strategies can be used, but it
is generally necessary to use at least one of these approaches.

Having linear detectors to measure I0 and I for transmission measurements is important
for good XAFS measurements, and not especially difficult. A simple ion chamber (a parallel
plate capacitor filled with an inert gas such nitrogen or argon, and with a high voltage
across it through which the X-ray beam passes) is generally more than adequate, as these
detectors themselves are generally very linear over a wide range of X-ray intensities. The
currents generated from the detectors are quite low (often in the picoampere range, and
rarely above a few microampere) and so need to be amplified and transmitted to a counting
system. Noise in transmission lines and linearity of the amplification systems used for ion
chambers (and other detectors) can cause signal degradation, so keeping cables short and
well-grounded is important. Typical current amplifiers can have substantial non-linearities
at the low and high ends of their amplification range, and so have a range of linearity limited
to a few decades. For this reason, significant dark currents are often set and one must be
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careful to check for saturation of the amplifiers. In addition, one should ensure that the
voltage applied across the ion chamber plates is sufficiently high so that all the current is
collected – simply turning up the voltage until the intensity measured for a incident beam
of constant intensity is itself constant and independent of voltage is generally sufficient.
Such checks for detector linearity can be particularly important if glitches are detected in a
spectrum. For fluorescence measurements, several kinds of detectors can be used in addition
to ion chambers, and linearity can become an important issue and depend on details of the
detector.

With a good source of monochromatic X-rays and a good detection system, accurate
and precise transmission measurements on uniform samples of appropriate thickness, are
generally easy. Some care is required to make sure the beam is well-aligned on the sample
and that harmonics are not contaminating the beam, but obtaining a noise level of 10−3 of
the signal is generally easy for transmission measurements. Such a noise level is achievable
for fluorescence measurements but can be somewhat more challenging, especially for very
low concentration samples.

4.1 Transmission XAFS measurements

For concentrated samples, in which the element of interest is a major component – 10% by
weight or higher is a good rule of thumb – XAFS should be measured in transmission. To
do this, one needs enough transmission through the sample to get a substantial signal for
I. With, µt = ln(I/I0), we typically adjust the sample thickness t so that µt ≈ 2.5 above
the absorption edge and/or the edge step ∆µ(E)t ≈ 1. For Fe metal, this gives t = 7µm,
while for many solid metal-oxides and pure mineral phases, t is typically in the range of
10 to 25 µm. For concentrated solutions, sample thickness may be several millimeter thick,
but this can vary substantially. If both µt ≈ 2.5 for the total absorption and an edge step
∆µ(E)t ≈ 1 cannot be achieved, it is generally better to have a smaller edge step, and to
keep the total absorption below µt ≈ 4. Tabulated values for µ(E) for the elements are
widely available, and software such as hephaestus(Ravel & Newville, 2005) can assist in
these calculations.

In addition to requiring the right thickness for transmission measurements, the sample
must be of uniform thickness and free of pinholes. Non-uniformity (that is, variations in
thickness of a factor of 2 or so) and pinholes in the sample can be quite damaging, as µ is
logarithmic in I. Since the portionof the beam going through a small hole in the sample
will transmit with very high intensity, it will disproportionately contribute to I compared
to the parts of the beam that actually go through the sample. For a powder, the grain
size cannot be much bigger than an absorption length, or this too will lead to non-linear
variations in the beam transmitted through the sample. If these challenging conditions can
be met, a transmission measurement is very easy to perform and gives excellent data. This
method is usually appropriate for pure mineral phases, or for other systems in which the
aborbing element has a concentrations > 10%.

A few standard methods for making uniform samples for transmission XAFS exist. If
one can use a solution or has a thin, single slab of the pure material (say, a metal foil, or
a sample grown in a vacuum chamber), these can make ideal samples. For many cases,
however, a powder of a reagent grade chemical or mineral phase is the starting material.
Because the required total thickness is so small, and uniformity is important, grinding and
sifting the powder to selected the finest grains can be very helpful. Using a solvent or
other material in the griding process can be useful. In some case, suspending a powder
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in a solvent to skim off the smallest particles held up by surface tension can also be used.
Spreading or painting the grains onto sticky tape and shaking off any particles that don’t
stick can also be used to select the finest particles, and can make a fairly uniform sample,
with the appropriate thickness built up by stacking multiple layers. Ideally, several of these
techniques can be used in combination.

Figure 14: X-ray fluorescence spectrum from an Fe-rich mineral (a feldspar),
showing the Fe Kα and Kβ emission lines around 6.4 and 7.0 keV, and the
elastically (and nearly-elastically) scattered peak near 8.5 keV. At lower energies,
peaks for Ca, Ti, and V can be seen.

4.2 Fluorescence XAFS measurements

For samples that cannot be made thin enough for transmission or with the element of
interest at lower concentrations (down to the ppm level and occasionally lower), monitoring
the X-ray fluorescence is the preferred technique for measuring the XAFS. In a fluorescence
XAFS measurement, the X-rays emitted from the sample will include the fluorescence line
of interest, fluorescence lines from other elements in the sample, and both elastically and
inelastically (Compton) scattered X-rays. An example fluorescence spectrum is shown in
Fig 14. This shows Fe Kα and Kβ fluorescence lines along with the elastically scattered
peak (unresolvable from the Compton scatter), as well as fluorescence lines from Ca, Ti,
and V. In many cases the scatter or fluorescence lines from other elements will dominate
the fluorescence spectrum.

There are two main considerations for making good fluorescence XAFS measurements:
the solid angle collected by the detector, and the energy resolution for fluorescence lines.
The need for solid angle is easy to understand. The fluorescence is emitted isotropically, and
we’d like to collect as much of the available signal as possible. X-rays that are elastically and
inelastically scattered (for example, by the Compton scattering process) by the sample are
not emitted isotropically because the X-rays from a synchrotron are polarized in the plane
of the synchrotron, (a fact we’ve neglected up to this point). This polarization means that
elastic scatter is greatly suppressed at 90◦ to the incident beam, in the horizontal plane.
Therefore, fluorescence detectors are normally placed at a right angle to the incident beam.

Energy resolution for a fluorescence detector can be important as it allows discrimina-
tion of signals based on energy, so that scattered X-rays and fluorescence lines from other
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elements can be suppressed relative to the intensity of the fluorescence lines of interest. This
lowers the background intensity, and increases the signal-to-noise level. Energy discrimina-
tion can be accomplished either physically, by filtering out unwanted emission before it gets
to the detector, or electronically after it is detected, or both.

Figure 15: The effect of a “Z-1” filter on a measured fluorescence spectrum. A
filter of Mn placed between sample and detector will absorb most of the scatter
peak, while transmitting most of the Fe Kα emission. For samples dominated
by the scatter peak, such a filter can dramatically improve the signal-to-noise
level.

An example of a commonly used physical filter is to place a Mn-rich material between
an Fe-bearing sample and the fluorescence detector. Due to the Mn K absorption edge,
the filter will preferentially absorb the elastic and inelastic scatter peak and pass the Fe
Kα line, as shown in Fig 15. For most K edges, the element with Z − 1 of the element
of interest can be used to make an appropriate filter, and appropriate filters can be found
for most of the L edges. A simple filter like this can be used with a detector without any
intrinsic energy resolution, such as an ion chamber. To avoid re-radiation from the filter
itself, Soller slits, as shown in Fig 16, can be used to preferentially collect emission from
the sample and block any signal generated away from the sample from getting into the
fluorescence detector, including emission from the fiter itself. Such an arrangement can be
very effective especially when the signal is dominated by scatter, as when the concentration
of the element of interest is in the range of hundreds of ppm or lower.

Energy discrimination can also be done electronically on the measured X-ray emission
spectrum after it has been collected in the detector. A common example of this approach
uses a solid-state Si or Ge detector, which can achieve energy resolutions of a ≈ 200 eV
or better. The spectrum shown in Fig 14 was collected with such a Ge solid-state detec-
tor. These detectors have an impressive advantage of being able to measure the full X-ray
fluorescence spectrum, which is useful in its own right for being able to identify and quan-
tify the concentrations of other elements in the sample. Because unwanted portions of the
fluorescence spectrum can be completely rejected electronically, these detectors can have
excellent signal-to-background ratios and be used for XAFS measurements with concentra-
tions down to ppm levels. Though solid-state detectors have many advantages, they have a
few drawbacks:
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Figure 16: The practical use of “Z-1” filter for energy discrimination of a fluo-
rescence spectrum. The filter placed between sample and detector will absorb
most of the scatter peak. Because the filter can itself re-radiate, a set of metal
Soller slits pointing at the sample will preferentially absorb the emission from
the filter and prevent it from entering the detector.

Dead time: The electronic energy discrimination takes a finite amount of time, which
limits the total amount of signal that can be processed. These detectors typically
saturate at ≈ 105 Hz of total count rate or so. When these rates are exceeded, the
detector is effectively unable to count all the fluorescence, and is said to be “dead”
for some fraction of the time. It is common to use ten or more such detectors in
parallel. Even then, the limit on total intensity incident for these detectors can limit
the quality of the measured XAFS. This will be discussed more below.

Complicated: Maintaining, setting up, and using one of these is much more work than
using an ion chamber. For example, germanium solid-state detectors must be kept at
liquid nitrogen temperatures. The electronics electronics needed for energy discrimi-
nation can be complicated, expensive, and delicate.

Despite these drawbacks, the use of solid-state detectors is now fairly common practice
for XAFS, especially for dilute and heterogeneous samples, and the detectors and electronics
themselves are continually being improved.

Before we leave this section, there are two import effect to discuss for XAFS measure-
ments made in fluorescence mode. These are self-absorption or over-absorption from the
sample, and a more detailed explanantion of deadtime effects for measurements made with
solid-state detectors. If not dealt with properly, these effects can substantially comprise
otherwise good XAFS data, and so it is worth some attention to understand these in more
detail.

4.3 Self-Absorption (or Over-Absorption) of Fluorescence XAFS

The term self-absorption when referred to fluorescence XAFS can be somewhat confusing.
Certainly, the sample itself can absorb many of the fluoresced X-rays. For example for a
dilute element (say, Ca) in a relatively dense matrix (say, iron oxide), the Ca fluorescence
will be severely attenuated by the sample and the measured fluorescence signal for Ca will
be dictated by the escape depth of the emitted X-ray in the matrix.



4 XAFS MEASUREMENTS: TRANSMISSION AND FLUORESCENCE 25

Though that is an important consideration, and the meaning of the term self-absorption
in quantitative X-ray fluorescence analysis, this is not what is usually meant by the term
in EXAFS. Rather, the term self-absorption for EXAFS usually refers to the case where
the penetration depth into the sample is dominated by the element of interest, and so
is one special case of the term as used in X-ray fluorescence analysis. In the worst case
for self-absorption (a very thick sample of a pure element), the XAFS simply changes the
penetration depth into the sample, but essentially all the X-rays are absorbed by the element
of interest. The escape depth for the fluoresced X-ray is generally much longer than the
penetration depth, so that most absorbed X-rays will generate a fluoresced X-ray that will
escape from the sample. This severely dampens the XAFS oscillations, and for a very
concentrated sample, there may be no XAFS oscillations at all. With this understanding of
the effect, the term over-absorption(Manceau et al. , 2002) is probably a better description,
and should be preferred to self-absorption even though the latter is in more common usage.

I0
θ

φ

sample

If

Figure 17: fluorescence X-ray absorption measurements, showing incident angle
θ and exit angle φ.

Earlier we said that for XAFS measured in fluorescence

µ(E) ∝ If/I0. (27)

This is a slight oversimplification. The probability of fluorescence is proportional to the
absorption probability but the fluorescence intensity that we measure has to travel back
through the sample to get to the detector. Since all matter attenuates X-rays, the fluores-
cence intensity, and therefore the XAFS oscillations, can be damped. More correctly, the
measured fluorescence intensity goes as (see Fig. 17)

If = I0
ε∆Ω

4π

µχ(E)
{

1− e−[µtot(E)/ sin θ+µtot(Ef )/ sinφ]t
}

µtot(E)/ sin θ + µtot(Ef )/ sinφ
(28)

where ε is the fluorescence efficiency, ∆Ω is the solid angle of the detector, Ef is the energy of
the fluorescence X-ray, θ is the incident angle (between incident X-ray and sample surface),
φ is the exit angle (between fluoresced X-ray and sample surface), µχ(E) is the absorption
from the element of interest, and µtot(E) is the total absorption in the sample,

µtot(E) = µχ(E) + µother(E) (29)

Eq. 28 has several interesting limits that are common for real XAFS measurements.
First, there is the thin sample limit , for which µt � 1. The 1 − e−µt term then becomes
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(by a Taylor series expansion)

1− e−µt ≈ [µtot(E)/ sin θ + µtot(Ef )/ sinφ] t

which cancels the denominator, so that

If ≈ I0
ε∆Ω

4π
µχ(E)t (30)

Alternatively, there is the thick, dilute sample limit , for which µt� 1 and µχ � µother.
Now the exponential term goes to 0, so that

If = I0
ε∆Ω

4π

µχ(E)

µtot(E)/ sin θ + µtot(Ef )/ sinφ
. (31)

We can then ignore the energy dependence of µtot, leaving

If ∝ I0µχ(E) (32)

These two limits (very thin or thick, dilute samples) are the best cases for fluorescence
measurements.

For relatively thick, concentrated samples, for which µχ ≈ µother, so that µχ ≈ µtot we
cannot ignore the energy dependence of µtot, and must correct for the oscillations in µtot(E)
in Eq. 28. As said above, for very concentrated samples, µtot(E) ≈ µχ(E), and the XAFS
can be completely lost. On the other hand, if the self-absorption is not too severe, it can
be corrected using the above equations(Booth & Bridges, 2005; Pfalzer et al. , 1999).

Finally, these self-absorption effects can be reduced for thick, concentrated samples by
rotating the sample so that it is nearly normal to the incident beam. With φ → 0 or the
grazing exit limit , µtot(Ef )/ sinφ� µtot(E)/ sin θ, giving

If ≈ I0
ε∆Ω

4π

µχ(E)

µtot(Ef )/ sinφ
(33)

which gets rid of the energy dependence of the denominator.
In certain situations, monitoring the intensity of emitted electrons (which includes both

Auger electrons and lower-energy secondary electrons) can be used to measure the XAFS.
The escape depth for electrons from material is generally much less than a micron, making
these measurements more surface-sensitive than X-ray fluorescence measurements, and es-
sentially immune to over-absorption. These electron yield measurements are generally most
appropriate for samples that are metallic or semiconductor (that is, electrically conduct-
ing enough so that the emitted electrons can be replenished from a connection to ground,
without the sample becoming charged). For these reasons, measuring the XAFS in electron
yield is not very common, and details of these measurements will be left for further reading.

4.4 Deadtime Corrections for Fluorescence XAFS

For fluorescence XAFS data measured with an energy discriminating fluorescence detector,
such as a solid-state Ge or Si detector, it is often necessary to correct for the so-called
deadtime effect . This accounts for the fact that a finite amount of time is needed to measure
the energy of each X-ray detected, and the electronics used to make this measurement can
only process one photon at at time. At high enough incident count rates, the detector
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electronics cannot process any more counts and is said to be saturated . These effects can be
particularly important when the absorbing atom is of relatively high concentration (above
1 % by weight or so), because the intensity of the monitored fluorescence line is negligible
below the edge, and grows dramatically at the absorption edge. This can add a non-linear
reduction of the fluorescence intensity, and so give non-linear artifact to the EXAFS and
XANES.

Figure 18: Typical deadtime curve for a pulse-counting, energy-discriminating
detector with a deatime τ of 2 µs. At low input count rate, the output count
rate – the rate of successfully processed data – rises linearly. As the count rate
increases, some of the pulses cannot be processed, resulting in a reduced output
count rate lower. At saturation, the output count rate cannot go any higher,
and increasing the input count rate will decrease the output rate. The dashed
line shows a line with unity slope, for a detector with no deadtime.

Fortunately, most energy discriminating detector and electronics systems can be char-
acterized with a simple parameter τ that relates the incident count rate with the output
count rate actually processed as

Iout = Iinpe
(−Iinpτ) (34)

where Iinp is the incident count rate to the detector, Iout is the output count rate, giving
the intensity reported by the detector, and τ is the deadtime, characteristic of the detector
and electronics system. For a realistic value of τ = 2µs, the relation of input count rate and
output count rate is shown in Figure 18. For many detector systems, there is some ability
to adjust the maximum output count rate, and so τ , that can be achieved, at the expense
of energy resolution of the fluorescence spectra. Of course, to make this correction, one
wants to get Iinp given Iout which can be complicated for very high count rates. For some
detector systems, one can simply record Iinp and Iout for each measurement as an output of
the detector and electronics system. Alternatively, one can separately measure τ so that the
corrections can be applied easily. Otherwise, a good rule of thumb is that spectra can be
corrected up to a rate for which Iout is half of Iinp (Iinp around 350 kHz for the curve shown
in Figure 18). Importantly, for multi-element detector systems, each detector element will
have its own deadtime, and corrections should be made for each detector before summing
the signals from multiple detectors.
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5 XAFS Data Reduction

For all XAFS data, whether measured in transmission or fluorescence (or electron emission),
the data reduction and analysis are essentially the same. First, the measured intensity
signals are converted to µ(E), and then reduced to χ(k). After this data reduction, χ(k)
can be analyzed and modeled using the XAFS equation. In this section, we’ll go through
the steps of data reduction, from measured intensities to χ(k), which generally proceeds as:

1. Convert measured intensities to µ(E), possibly correcting systematic measurement
errors such as self-absorption effects and detector deadtime.

2. Identify the threshold energy E0, typically as the energy of the maximum derivative
of µ(E).

3. Subtract a smooth pre-edge function from µ(E) to get rid of any instrumental back-
ground and absorption from other edges.

4. Determine the edge jump, ∆µ, at the threshold energy, and normalize µ(E), so that
the pre-edge subtracted and normalized µ(E) goes from approximately 0 below the
threshold energy to 1 well above the threshold energy. This represents the absorption
of a single X-ray, and is useful for XANES analysis.

5. Remove a smooth post-edge background function approximating µ0(E), thereby iso-
lating the XAFS χ = (µ− µ0)/∆µ.

6. convert χ from energy E to photo-electron wavenumber k =
√

2m(E − E0)/h̄2.

7. k-weight the XAFS χ(k) and Fourier transform into R-space

We’ll go through each of these steps in slightly more detail, and show them graphically
using real XAFS data.

As with many things, the first step is often the most challenging. Here, the differences
between measurements made in transmission and fluorescence mode are most pronounced.
For transmission measurements, we simply ignore the sample thickness, and use

µ(E) = ln(I0/I) (35)

where I0 and I are the signals measured from the ion chambers. Typically, the signals
measured as I0 and I are actually integrated voltages over some predefined time where
the voltages are taken from the output of current amplifiers with input currents from ion
chambers as input. Thus the measurements are not the incident flux in photons per second.
Rather, they are scaled measures of the flux absorbed in the ion chamber. For the most
part, the difference between what we think of as I0 (incident X-ray flux, in photons/second)
and what we actually measure for I0 (scaled, integrated current generated from X-rays
absorbed in the ion chamber) is not very significant, as when we take the ratio between
two ion chambers most of the factors that distinguish the conceptual intensity from the
measured signal will either cancel out, give an arbitrary offset, or give a slowly varying
monotonic drift with energy. Thus, it is common to see experimental values reported for
“raw” µ(E) in the literature that do not have dimensions of inverse length, and which
might even have values that are negative. For real values of µ(E) in inverse length, these
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measurements would be non-sensical, but for XAFS work this is of no importance, as we’ll
subtract off a slowly varying background anyway.

For fluorescence measurements, the situation is similar, except that one uses

µ(E) = If/I (36)

where If is the integrated fluorescence signal of interest. As with the transmission measure-
ments, there is generally no need to worry about getting absolute intensities, and one can
simply use the ratio of measured intensities. Because the instrumental drifts for a solid-
state, energy-discriminating fluorescence detector may be different than for a gas-filled ion
chamber, it is not unusual for µ(E) for fluorescence XAFS measurements to have an overall
upward drift with energy, where transmission XAFS tends to drift down with energy.

In addition to the corrections for over-absorption and deadtime effects discussed in
the previous section, other corrections may need to be made to the measured µ(E) data.
For example, sometimes bad glitches appear in the data, and are not normalized away by
dividing by I0. This is often an indication of insufficient voltage on ion chambers, of too
much harmonic content in the X-ray beam, poorly uniform samples, incomplete deadtime
correction, or a combination of these. If possible, it is preferred to address these problems
during the measurement, but this is not always possible. For such glitches, the best approach
is simply to remove them from the data – asserting that they were not valid measurements
of µ(E).

Another example of a correction that can be made in the data reduction step is for
cases where another absorption edge occurs in the spectrum. This could be from the same
element (as is over the case for measurements made at the LIII edge, where the LII edge will
eventually be excited, or from a different element in a complex sample. As with a glitch,
the appearance of another edge means that µ(E) is no longer from the edge and element of
interest, and it is best to simply truncate the data at the other edge.

Figure 19: The XANES portion of the XAFS spectrum (blue), and the identifi-
cation of E0 from the maximum of the derivative dµ/dE (red). This selection of
E0 is easily reproduced but somewhat arbitrary, so we may need to refine this
value later in the analysis.
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5.1 Pre-edge Subtraction and Normalization

Once the measurement is converted to µ(E), the next step is usually to identify the edge
energy. Since XANES features can easily move the edge by several eV, and because calibra-
tions vary between monochromators and beamlines, it is helpful to be able to do this in an
automated way that is independent of the spectra. Though clearly a crude approximation,
the most common approach is to take the maximum of the first derivative of µ(E). Though
it has little theoretical justification, it is easily reproduced, and so can readily be checked
and verified.

Figure 20: XAFS pre-edge subtraction and normalization. A line (or simple,
low-order polynomial) is fit to the spectrum below the edge, and a separate low-
order polynomial is fit to the spectrum well above the edge. The edge jump, ∆µ0,
is approximated as the difference between these two curves at E0. Subtracting
the pre-edge polynomial from the full spectrum and dividing by the edge jump
gives a normalized spectrum.

Instrumental drifts from detector systems can be crudely approximated by a simple
linear dependence in energy. That is a linear fit to the pre-edge range of the measured
spectrum is found, and subtracted. In some cases, a so-called Victoreen pre-edge function
(in which one fits a line to Enµ(E) for some value of n, typically 1, 2 or 3). Such a fit can
do a slightly better job at approximating the instrumental drifts for most XAFS spectra,
especially for dilute data measured in fluorescence with a solid-state detector, where the
contribution from elastic and Compton-scattered intensity into the energy window of the
peak of interest will decrease substantially with energy, as the elastic peak moves up in
energy.

The next step in the process is to adjust the scale of µ(E) to account for the absorption
of 1 photo-electron. By convention, we normalize the spectrum to go from approximately
0 below the edge to approximately 1 above the edge. To do this, we find the edge step,
∆µ, and divide µ(E) by this value. Typically, a low-order polynomial is fitted to µ(E)
well above the edge (away from the XANES region), and the value of this polynomial is
extrapolated to E0 to give the edge step. It should be emphasized that this convention is
fairly crude and can introduce systematic errors.

Examples of these processing steps (location of E0, subtraction of pre-edge, and nor-
malization to an edge jump of 1) for transmission XAFS data at the Fe K-edge of FeO
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are shown in Figures 19 and 20. For XANES analysis, this amount of data reduction is
generally all that is needed. For both XANES and EXAFS analysis, the most important
part of these steps is the normalization to the edge step. For XANES analysis, spectra are
generally compared by amplitude, so an error in the edge step for any spectra will directly
affect the weight given to that spectra. For EXAFS, the edge step is used to scale χ(k), and
so is directly proportional to coordination number. Errors in the edge step will translate
directly to errors in coordination number. Getting good normalization (such that µ(E) goes
to 1 above the edge) is generally not hard, but requires some care, and it is important to
assess how well and how consistently this normalization process actually works for a partic-
ular data set. Most existing analysis packages do these steps reasonably well, especially in
making spectra be normalized consistently, but it is not at all unusual for such automated,
initial estimates of the edge step to need an adjustment of 10%.

5.2 Background Subtraction

Figure 21: Post-edge background subtraction of FeO EXAFS. The background
µ0(E) shown in red is a smooth spline function that matches the low-R compo-
nents of µ(E), in this case using 1 Å for Rbkg.

Perhaps the most confusing and error-prone step in XAFS data reduction is the de-
termination and removal of the post-edge background function that approximates µ0((E).
This is somewhat unfortunate, as it does not need to be especially difficult. Since µ0(E)
represents the absorption coefficient from the absorbing atom without the presence of the
neighboring atoms, we cannot actually measure this function separately from the EXAFS.
In fact, even if possible, measuring µ(E) for an element in the gas phases would not really
be correct, as µ0(E) represents the absorbing atom embedded in the molecular or solid
environment, just without the scattering from the core electrons of the neighboring atoms.
Instead of even trying to measure an idealized µ0(E), we determine it empirically by fitting
a spline function to µ(E). A spline is a piece-polynomial function that is designed to be
adjustable enough to smoothly approximate an arbitrary waveform, while maintaining con-
venient mathematical properties such has continuous first and second derivatives. This is
certainly an ad hoc approach, without any real physical justification. Still, it is widely used
for EXAFS analysis, and has the advantage of being able to account for those systematic
drifts in our measurement of µ(E) that make it differ from the true µ(E), as long as those
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drifts vary slowly with energy. The main challenge with using an arbitrary mathematical
spline to approximate µ0(E) is to decide how flexible to allow it to be, so as to ensure that
it does not follow µ(E) closely enough to remove the EXAFS. That is, we want a µ0(E)
to remove the slowly varying parts of µ(E) while not changing χ(k), the part of µ(E) that
varies more quickly with E.

A simple approach for determining µ0(E) that works well for most cases relies on the
Fourier transform to mathematically express the idea that µ0(E) should match the slowly
varying parts of µ(E) while leaving the more quickly varying parts of µ(E) to give the
EXAFS χ. The Fourier transform is critical to EXAFS analysis, and we’ll discuss it in
more detail shortly, but for now the most important thing to know is that it gives a weight
for each frequency making up a waveform. For EXAFS, the Fourier transform converts χ
from wavenumber k to distance R.

Figure 22: The EXAFS χ(k) (blue) isolated afer background subtraction. The
EXAFS decays quickly with k, and weighting by k2 (red) amplifies the oscilla-
tions at high k.

For determining the background µ0(E), we want a smoothly varying spline function that
removes the low-R components of χ, while retaining the high-R components. Conveniently,
we have a physically meaningful measure of what distinguishes “low-R” from “high-R”, in
that we can usually guess the distance to the nearest neighboring atom, and therefore assert
that there should be no signal in the EXAFS originating from atoms at shorter R. As a
realistic rule of thumb, it is rare for atoms to be closer together than about 1.5 Å – this is
especially true for the heavier elements for which EXAFS is usually applied. Thus, we can
assert that a spline should be chosen for µ0(E) that makes the resulting χ have as little
weight between 0 and 1 Å as possible, while ignoring the higher R components of χ. This
approach and the use of Rbkg as the cutoff value for R(Newville et al. , 1993), is not always
perfect, but can be applied easily to any spectra to give a spline function that reasonably
approximates µ0(E) for most spectra with at least some physically meaningful basis. Fig 21
shows a typical background spline found for FeO, using a high-R cutoff Rbkg of 1.0 Å. The
resulting χ(k) is shown in Fig 22.

The effect of varying Rbkg on the resulting spline for µ0(E) and χ in both k- and R-space
can be seen in Fig 23. Here µ0(E) for the same FeO µ(E) spectra is shown using values for
Rbkg of 0.2, 1.0, and 4.0 Å. Having Rbkg too small (shown in red) results in a µ0(E) that
is does not vary enough, giving a slow oscillation in χ(k), and spurious peak below 0.5 Å
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Figure 23: The effect of changing Rbkg on µ0(E) and χ. A typical value for Rbkg of 1.0 Å
(solid blue) results in a spline for µ0(E) that can follow the low-R variations in µ(E) while
not removing the EXAFS. A value too small (Rbkg = 0.2 Å, solid red) gives a spline that is
not flexible enough, leaving a low-R artifact, but one that will not greatly impact further
analysis. On the other hand, a value too large (Rbkg = 4.0 Å, solid black) gives a spline
flexible enough to completely remove the first and second shells of the EXAFS.

in |χ(R)|. On the other hand, setting Rbkg too high (shown in black) can result in a µ0(E)
that matches all the EXAFS oscillations of interest. Indeed, with Rbkg = 4 Å, both the
first and second shells of the FeO EXAFS are entirely removed, leaving only the highest R
components. This is clearly undesirable. In general, it is not too difficult to find a suitable
value for Rbkg, with 1 Å or half the near-neighbor distance being fine default choices. As
we can see from Fig 23, having Rbkg too small is not always a significant problem – the low
R peak can simply be ignored in the modeling of the spectra, and there is little effect on
the spectrum at higher R.

5.3 EXAFS Fourier Transforms

As mentioned above, the Fourier transform is central for the understanding and modeling
of EXAFS data. Indeed, the initial understanding of the phenomena was aided greatly by
the ability to perform Fourier transforms on measured EXAFS spectra. While there are
certainly ample resources describing Fourier transforms, a few important points about the
use of Fourier transforms for EXAFS will be made here.

The first thing to notice from Fig 24 is that two peaks are clearly visible – these corre-
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spond to the Fe-OO and Fe-Fe distances in FeO. Thus the Fourier transformed XAFS can
be used to isolate and identify different coordination spheres around the absorbing Fe atom.
Indeed, |χ(R)| almost looks like a radial distribution function, g(R). While EXAFS does
depend on the partial pair distribution – the probability of finding an atom at a distance
R from an atom of the absorbing species – χ(R) is certainly not just a pair distribution
function. This can be seen from the additional parts to the EXAFS Equation, including
the non-smooth k dependence of the scattering factor f(k) and phase-shift δ(k).

A very important thing to notice about χ(R) is that R positions of the peaks are shifted
to lower R from what g(R) would give. For FeO, the first main peak occurs at 1.6 Å, while
the FeO distance in FeO is more like 2.14 Å. This is not an error, but is due to the scattering
phase-shift – recall that the EXAFS goes as sin [2kR+ δ]. This phase-shift is typically -0.5
Å or so, suggesting that δ(k) ∼ −k, which can be verified as a decent approximation from
Fig 10.

Figure 24: The Fourier Transformed XAFS, χ(R). The magnitude |χ(R)| (blue)
is the most common way to view the data, but the Fourier transform makes
χ(R) a complex function, with both a real (red) and imaginary part, and the
magnitude hides the important oscillations in the complex χ(R).

The Fourier Transform results in a complex function for χ(R) even though χ(k) is a
strictly real function. It is common to display only the magnitude of χ(R) as shown on the
left of Fig 24, but the real and imaginary components contain important information that
cannot be ignored. When we get to modeling the XAFS, it will be important to keep in
mind that χ(R) has both real and imaginary components.

The standard definition for a Fourier transform of a signal f(t) can be written as

f̃(ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt (37)

f(t) =
1√
2π

∫ ∞

−∞
f̃(ω)eiωtdω (38)

(39)

where the symmetric normalization is one of the more common conventions. This gives
Fourier conjugate variables of ω and t, typically representing frequency and time, respec-
tively.
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Because the XAFS equation (see Eq. 16 for example) has χ(k) ∝ sin[2kR + δ(k)], the
conjugate variables in XAFS are generally taken to be k and 2R. While the normalization
for χ(R) and χ(k) is a matter of convention, we follow the symmetric case above (with t
replaced by k and ω replaced by 2R).

There are a few important modifications to mention for the typical use of Fourier trans-
forms in XAFS analysis. First, an XAFS Fourier transform multiplies χ(k) by a power of
k, typically k2 or k3, as shown in Fig. 22. This weighting helps compensate for the strong
decay with k of χ(k), and allows either emphasizing different portions of the spectra, or
giving a fairly uniform intensity to the oscillations over the k range of the data. In addition,
χ(k) is multiplied by a window function Ω(k) which acts to smooth the resulting Fourier
transform and remove ripple and ringing that would result from a sudden truncation of
χ(k) at the ends of the data range.

The second important issue is that the continuous Fourier transform described above
is replaced by a discrete transform. This better matches the discrete sampling of energy
and k values of the data, and allows Fast Fourier Transform techniques to be used, which
greatly improves computational performance. Using a discrete transform does change the
definitions of the transforms used somewhat. First, the χ(k) data must be interpolated

onto a uniformly spaced set of k values. Typically, a spacing of δk = 0.05 Å
−1

is used.
Second, the array size for χ(k) used in the Fourier transform should be a power of 2, or at
least a product of powers of 2, 3, and 5. Typically, Nfft = 2048 points are used. With the
default spacing between k points, this would accommodate χ(k) up to k = 102.4AA−1. Of
course, real experimental data doesn’t extend that far, so the array to be transformed is
zero-padded to the end of the range.

The spacing of points inR is given as δR = π/(Nfftδk). The zero-padding of the extended
k range will increase the density of points in χ(R) and result in smoothly interpolating the

values. For Nfft = 2048 and δk = 0.05 Å
−1

, the spacing in R is approximately δR =
0.0307 Å.

For the discrete Fourier transforms with samples of χ(k) at the points kn = n δk, and
samples of χ(R) at the points Rm = mδR, the definitions for the XAFS Fourier transforms
become:

χ̃(Rm) =
iδk√
πNfft

Nfft∑

n=1

χ(kn) Ω(kn) kwn e
2iπnm/Nfft

χ̃(kn) =
2iδR√
πNfft

Nfft∑

m=1

χ̃(Rm) Ω(Rm) e−2iπnm/Nfft

These normalization conventions preserve the symmetry properties of the Fourier Trans-
forms with conjugate variables k and 2R.

As mentioned above, the window function Ω will smooth the resulting Fourier transform
and reduce the amount of ripple that would arise from a sharp cut-off χ(k) at the ends of
the data range. Since Fourier transforms are used widely in many fields of engineering
and science, there is an extensive literature on such window functions, and a lot of choices
and parameters available for constructing windows. In general terms, Ω(k) will gradually
increases from 0 to 1 over the low-k region, and decrease form 1 to 0 over the high-k
region, and may stay with a value 1 over some central portion. Several functional forms
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and parameters for these windoes can be used, and are available in most EXAFS analysis
software. Many good examples of the shapes, parameters, and effects of these on the
resulting χ(R) are available in program documentation, and other on-line tutorials.

In many analyses, the inverse Fourier transform is used to select a particular R range
and transform this back to k space, in effect filtering out most of the spectrum, and leaving
only a narrow band of R values in the resulting filtered χ(k). Such filtering has the poten-
tial advantage of being able to isolate the EXAFS signal for a single shell of physical atoms
around the absorbing atom, and was how many of the earliest EXAFS analyses were done.
This approach should be used with caution since, for all but the simplest of systems, it can
be surprisingly difficult to effectively isolate the EXAFS contribution from an individual
scattering atom this way. It is almost never possible to isolate a second neighbor coordi-
nation sphere in this way. For this reason, many modern analyses of EXAFS will use a
Fourier transform to convert χ(k) to χ(R), and use χ(R) for data modeling, not bothering
to try to use a filter to isolate shells of atoms.
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6 XAFS Data Modeling

In this section, we’ll work through an example of structural refinement of EXAFS. The
FeO data shown and reduced in the previous section will be analyzed here. Of course, we
know the expected results for this system, but it will serve to demonstrate the principles of
XAFS modeling, and allow us to comment on a number of features and subtleties in data
modeling.

FeO has a simple rock salt structure, with Fe surrounded by 6 O, with octahedral
symmetry, and then 12 Fe atoms in the next shell. Starting with this simple structure, we
can calculate scattering amplitudes f(k) and phase-shifts, δ(k) theoretically. A complete
description of this calculation is beyond the scope of this treatment, but a few details will
be given below.

Once we have these theoretical scattering factors, we can use them in the EXAFS
equation to refine structural parameters from our data. That is, we’ll use the calculated
functions f(k) and δ(k) (and also λ(k)) in the EXAFS equation to predict the and modify
the structural parameters R, N , and σ2 from Eq. 26, and also allow E0 (that is, the energy
for which k = 0) to change until we get the best-fit to the χ(k) of the data. Because of the
availability of the Fourier transform, we actually have a choice of doing the refinement with
the measured χ(k) or with the Fourier transformed data. Because working in R-space allows
us to selectively ignore higher coordination shells, using R-space for the fitting has several
advantages and we will use it in the examples here. When analyzing the data this way,
the full complex XAFS χ(R), not just the magnitude |χ(R)|, must be used. The examples
shown here are done with the feff(Rehr et al. , 1991) program to construct the theoretical
factors, and the ifeffit(Newville, 2001) package to do the analysis. Some details of these
particular programs will be given, but similar results would be obtained with any of several
other EXAFS analysis tools.

6.1 Running and Using feff for EXAFS calculations

In order to calculate the f(k) and δ(k) needed for the analysis, the feff program(Rehr et al.
, 1991) starts with a cluster of atoms, builds atomic potentials from this, and simulates a
photo-electron with a particular energy being emitted by a particular absorbing atom and
propagating along a set of scattering paths(Newville, 2001). feff represents a substantial
work of modern theoretical condensed matter physics, and includes many conceptually
subtle but quantitatively important effects, including include the finite size of the scattering
atoms, and many-body effects due to the fact that electrons are indistinguishable particles
that must satisfy Pauli’s exclusion principle(Rehr & Albers, 2000). These are beyond the
scope of this work, but we mention them here because they have important consequences
for how we use feff.

We do not, as may have been inferred from some of the earlier discussion, use feff
to calculate f(k) and δ(k) for the scattering of, say, an oxygen atom, and use that for all
scattering of oxygen. Instead it calculates the EXAFS for a particular path, say Fe-O-Fe
taken from a realistic cluster of atoms. This includes the rather complex propagation of
the photo-electron out of the Fe atom, through the sea of electrons in a iron oxide material,
scattering from an oxygen atom with finite size, and propagating back to the absorbing Fe
atom. As a result of this, we make rough but realistic simulations of the EXAFS with feff
for a particular set of paths, and then refine the path lengths and coordination numbers for
those paths.
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Starting with a cluster of atoms (which does not need to be crystalline, but this is often
easy to use), feff determines the important scattering paths, and writes out a separate file
for the scattering contributions to from each scattering path. Conveniently (and though it
does not calculate these factors individually), it breaks up the results in a way that can
be put into the standard form of the EXAFS equation, even for multiple-scattering paths.
This allows analysis procedures to easily refine distances, apply multiplicative factors for
coordination numbers and S2

0 , and apply disorder terms. Because the outputs are of a
uniform format, we can readily mix outputs from different runs of the programs, which is
important for modeling complex structures with multiple coordination environments for the
absorbing atom.

6.2 First-shell fitting

For an example of modeling EXAFS, we start with FeO, a transition metal oxide with
the particularly simple rock-salt structure, while still being representative of many systems
found in nature and studied by EXAFS, in that the first shell is oxygen, and the second
shell is a heavier metal element. We begin with modeling the first Fe-O shell of FeO, take a
brief diversion into the meaning and interpretation of the statistical results of the modeling,
and then continue on to analyze the second shell.

Figure 25: First shell fit to the EXAFS of FeO, showing the magnitude of the
Fourier transform of the EXAFS, |χ(R)|, for data (blue) and best fit model
(red).

We start with the crystalline structure and generate the input format for feff, run feff,
and gather the outputs. For the rock-salt structure of FeO with six Fe-O near-neighbors in
octahedral coordination, and twelve Fe-Fe second neighbors, there will be one file for the
six Fe-O scattering paths, and one file for the twelve Fe-Fe scattering paths. To model the
first shell EXAFS, we use the simulation for the Fe-O scattering path, and refine the values
for NS2

0 , R, and σ2. We set S2
0 to 0.75. We also usually need to (and in this example,

will) refine a value for E0, the threshold defining where k is 0. This is usually necessary
because the choice of E0 from the maximum of the first derivative of the spectra is ad hoc,
and because the choice of energy threshold in the calculation is somewhat crude. While the
refined value for E0 may be small, we will see that E0 is strongly correlated with R, so that
getting both its value and uncertainty is important.

The results of the initial refinement is shown in Fig 25, with best values and estimated
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Table 1: Best values and uncertainties (in parentheses) for the refined first shell parameters
for FeO. The refinement fit the components of χ(R) between R = [0.9, 2.0] Å after a Fourier

transform using k = [2.5, 13.5] Å
−1

, a k-weight of 2, and a Hanning window function. S2
0

was fixed to 0.75.

Shell N R (Å) σ2 (Å
2
) ∆E0 (eV)

Fe-O 5.5(0.5) 2.10(0.01) 0.015(.002) -3.2(1.0)

uncertainties for the refined parameters given in Table 1. These values are not perfect for
crystalline FeO, especially in that the distance is contracted from the expected value of
2.14 Å, but are reasonably close for a first analysis.

It is instructive to look at this refinement more closely, and discuss a few of the details.
The refinement was done on the data in R-space, after a Fourier transform. This weighted
χ(k) by k2, and multiplied it by a Hanning window function with a range between k =

[2.5, 13.5] Å
−1

, with a dk parameter of 2 Å
−1

. The refinement used the real and imaginary
components of χ(R) between R = [0.9, 2.0] Å. The k2χ(k) for the data and best-fit model,
as well as the window function are shown on the left side of Fig 26.

From this and Fig 25, it is evident that the higher frequency components (that is, from
the second shell of Fe-Fe) dominate k2χ(k). This is a useful reminder of the power of the
Fourier transform in XAFS analysis: it allows us to concentrate on one shell at a time and
ignore the others, even if they have larger overall amplitude.

Figure 26: EXAFS k2χ(k) (left) for data (blue) and best-fit model (red) for the first shell
of FeO, and the window function, Ω(k), used for the Fourier transform to χ(R). While the
red curve shows the best-fit to the 1st shell of the EXAFS, this is not obvious from looking
at k2χ(k). The complex Fourier transform EXAFS χ(R) (right) for the real part (solid)
and magnitude (dashed) of the data (blue) and best-fit model (red) in the region of the first
and second shell shows the model matches the data very well for the first shell.

6.3 Fit statistics and estimated uncertainties

At this point, we should pause to discuss some details of the fit, including the fit statistics
and how the best-fit values and uncertainties are determined in the refinement. Because
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the EXAFS equation is complex, and non-linear in the parameters we wish to refine, the
refinement is done with a non-linear least-squares fit. Such a fit uses the standard statis-
tical definitions for chi-square and least-squares to determine the best values for the set of
parameters varied as those that find the smallest possible sum of squares of the difference
in the model and data. The standard definition of the chi-square or χ2 statistic (note the
use of χ2 from standard statistical treatments – don’t confuse with the EXAFS χ!) that is
minimized in a least-squares fit is defined as

χ2 =

Ndata∑

i

[ydata
i − ymodel

i (x)]2

ε2
(40)

where ydata
i is our experimental data, ymodel

i (x) is the model which depends on the variable
fitting parameters x, ε is uncertainty in the data, and Ndata is the number of points being fit.
Each of these terms deserves more discussion, and we will expand on these, while striving
for brevity.

The set of variable parameters x are the values actually changed in the fit. If we had
fixed a value (say, for N), it would not be a variable. Below, we will impose relationships
between parameters in the EXAFS equation, for example, using a single variable to give
the value for E0 for multiple paths. This counts as one variable in the fit, even though it
may influence the value of several physical parameters for multiple paths.

Importantly, the χ2 definition does not actually specify what is meant by the data
y. In the fit above, we used the real and imaginary components of χ(R), after Fourier
transforming the data with a particular window function and k-weight. Using different
parameters for the transform would result in different data (and model) to be fit, and could
change the results. We could have tried to fit the k2χ(k) without Fourier transforming, but
as can be seen from Fig. 26, the fit may have been substantially worse. But, as we are at
liberty to decide what is meant by “the data” to be modeled, we can include using multiple
spectra that we wish to model with one set of parameters x. Of course, any transformation
or extensions we make to the data must be applied equally to the model for the data. In
general, we find that fitting EXAFS data in R-space strikes a good balance between not
changing the data substantially, and allowing us to select the k and R ranges we wish to
and are able to model.

The uncertainty in the data is represented by ε in the above definition for χ2. Of course,
this too must match what we mean by “the data”, and will generally mean the uncertainty
in χ(R) in the range of the data we’re modeling. There are many general strategies for
estimating uncertainties in data, usually based on involved statistical treatment of many
measurements. Such efforts are very useful, but tend to be challenging to apply for every
EXAFS measurement. A convenient if crude approach is to rely on the fact that EXAFS
decays rapidly with R and to assert that the data at very high R (say, above 15 Å) reflects the
noise level. Applying this to the R range of our data assumes that the noise is independent
of R (white noise), which is surely an approximation. The advantage of the approach is
that it can be applied automatically for any set of data. Tests have shown that it gives a
reasonable estimate for data of low to normal quality, and underestimates the noise level
for very good data. A simple relationship based on Parseval’s theorem and Fourier analysis
can be used to relate εR, the noise estimate in χ(R) to εk, the noise in χ(k)(Newville et al.
, 1999).

There are a couple additional statistics that are particularly useful(Lytle et al. , 1989).
One of these is reduced chi-square, defined as χ2

ν = χ2/(Ndata − Nvarys) where Nvarys is
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the number of variable parameters in the fit. This has the feature of being a measure of
goodness-of-fit that is takes into account the number of variables used. In principle, for
a good fit and data with well-characterized uncertainties, ε, this value should approach 1.
χ2
ν is especially useful when comparing whether one fit is better than another. In simplest

terms, a fit with a lower value for χ2
ν is said to be better than one with a higher value. Of

course, there is some statistical uncertainty in this assertion, and confidence intervals and
F tests can be applied to do a more rigorous analysis. For EXAFS analysis, a principle
difficulty is that the values of χ2

ν are often several orders of magnitude worse than 1, far
worse than can be ascribed to a poor estimate of ε. Partly because of this, another statistic
is R, defined as

R =

∑Ndata
i [ydata

i − yimodel(x)]2
∑Ndata

i [ydata
i ]2

(41)

which gives the size of the misfit relative to the norm of the data. This value is typically
found to below 0.05 or so for good fits, and is often found to be much better than that.

Last, and possibly most surprising, we discuss the problem of identifying Ndata. When
measuring µ(E) we are free to sample as many energy points as we wish, but increasing the
number of points in µ(E) doesn’t necessarily mean we have a better measure of the first
shell EXAFS. In the previous chapter, we mentioned that the zero-padding and fine spacing
of k data sets the spacing of data in R. We should be clear that this can (and usually does)
greatly over-sample the data in R space.

For any waveform or signal, the Nyquist-Shannon sampling theorem tells us that the
maximum R that can be measured is related to the spacing of sample in k, according to
(for EXAFS, with conjugate Fourier variables of k and 2R)

Rmax =
π

2δk
(42)

where Rmax is the maximum R value we can detect, and δk is the spacing for the χ(k)

data. Using δk = 0.05 Å
−1

is common in EXAFS, which means we cannot detect EXAFS
contributions beyond 31.4 Å. As the converse of this, the resolution for an EXAFS spectrum
– the separation in R below which two peaks can be independently measured – is given as

δR =
π

2kmax
(43)

where kmax is the maximum measured value of k. In short, what matters most for deter-
mining how well χ(R) is measured the signal at any particular value of R is how many
oscillations we have in χ(k).

Related to both Rmax and the resolution δR, and also resulting from basic signal process-
ing theory and Fourier analysis, the number of independent measurements in a band-limited
waveform is

Nind ≈
2∆k∆R

π
+ 1 (44)

where ∆k and ∆R are the range of useful data in k and R. For completeness, the above
equation is often given with a “+2” instead of a “+1”(Stern, 1993) in the EXAFS literature,
though we will follow the more conservative estimate, and note that it would give an upper
limit on the number of variables that could be determined from a set of data. In any event,
making finer measurements of µ(E) and χ(k) might allow us to reliably see data at higher
R values, but it does provide finer resolution of the distances well below the Nyquist cut
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off frequency, Rmax. In order to be able to extract more information for a particular range
of R, data to higher k is needed.

Thus, we should modify the definition of χ2 (and χ2
ν) used to reflect the number of truly

independent data points in the data, as

χ2 =
Nind

Ndata

Ndata∑

i

[ydata
i − ymodel

i (x)]2

ε2
(45)

where Nind is given by Eq. 44 and Ndata is the number of samples used for the data, even
if this far exceeds Nind . Values of Nind for real EXAFS data is not very large. In the first

shell fit to FeO, we used k = [2.5, 13.5] Å
−1

and R = [0.9, 2.0] Å which gives Nind ≈ 8.7,
and we used 4 variables in the fit – roughly half the maximum. For higher shells and more
complicated structures, we will have to come up with ways to limit the number of variables
in fits.

By measuring how χ2 changes as variables are moved way from their best-fit values,
estimates of the uncertainties for variables and correlations between pairs of variables can
be determined. Standard statistical arguments indicate that 1-σ error bars (that indicate a
68% confidence in the value) should increase χ2 by 1 from its best-fit value. This assumes
that χ2

ν ≈ 1, which is usually not true for EXAFS data. As a consequence, it it common
in the EXAFS literature to report uncertainties for values that increase χ2 by χ2

ν . This is
equivalent to asserting that a fit is actually good, and scaling ε so that χ2

ν is 1.
Estimating uncertainties and correlations between variables can be very fast, as the

computational algorithms for minimization compute and use intermediate values related to
these (in the form of the covariance matrix) to find the best values. Uncertainties determined
this way include the effect of correlations (that is, moving the value for one variable away
from its best value may change what the best value for another variable would be), but also
make some assumptions about how the values of the variable interact. More sophisticated
approaches, including brute-force exploration of values by stepping a variable through a
set of values and repeatedly refining the rest of the variables, can give better measures of
uncertainties, but are more computationally expensive.

Though the aim of a fit is to find the best values for the fitting parameters x, the
computational techniques used do no guarantee that the “global” minimum of χ2 is found,
only that a “local” minima is found based on the starting values. This, of course, can cause
considerable concern. Care should be taken to check that the results found are not too
sensitive to the starting values for the variables or data manipulation parameters including
Fourier transform ranges and weights, and background subtraction parameters. Checking
for false global minima is somewhat more involved. Fortunately, for EXAFS analysis with
reasonably well-defined shells, false minima usually give obviously non-physical results, such
as negative or huge coordination number, negative values for σ2. Another warning sign for
a poor model is an E0 shift away from the maximum of the first derivative by 10 eV or
more. This can sometimes happen, but can also indicate that the model χ(k) has jumped
a half or whole period away from its correct position, and that the amplitude parameters
may be very far off, as if the Z for the scatterer is wrong.

Our diversion into fitting statistics is complete, and we can return to our first shell
fit to Fe-O before continuing on. The data was estimated to have a εR ≈ 5 × 10−3 and
εk ≈ 2 × 10−4, which is a typical noise level for experimental χ(k) data. With a standard

k grid of 0.05 Å
−1

, and an R grid of ≈ 0.0307 Å, the fit had 72 data points, but Nind ≈ 8.7.
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Scaled to Nind as in Eq. 45, the fit has χ2 ≈ 243 and χ2
ν ≈ 51.7 (again with 4 variables),

and R ≈ 0.005.

6.4 Second-shell fitting

Figure 27: EXAFS |χ(R)| (left) and Re[χ(R)] (right) for FeO (blue) and best-fit model
(red) for the first two shells around Fe, including Fe-O and Fe-Feo scattering paths.

We are now ready to include the second shell in the model for the FeO EXAFS. To do
this, we simply add the path for Fe-Fe scattering to the sum in the EXAFS equation. We
will add variables for R, N , and σ2 for the Fe-Fe shell to those for the Fe-O scattering path.
We’ll use the same value for E0 for both the Fe-O and Fe-Fe path, and keep all parameters
the same as for the fit above, except that we’ll extend the R range to be R = [0.9, 3.1] Å.
This will increase Nind to ≈ 15.7, while we’ve increased the number of variables to 7.

Table 2: Best values and uncertainties (in parentheses) for the refined first (Fe-O) and second
(Fe-Fe) shells for FeO. The refinement fit the components of χ(R) between R = [0.9, 3.0] Å
with all other parameters as in Table 1.

Shell N R (Å) σ2 (Å
2
) ∆E0 (eV)

Fe-O 5.3(0.5) 2.11(0.01) 0.013(.002) -1.2(0.5)
Fe-Fe 13.4(1.3) 3.08(0.01) 0.015(.001) -1.2(0.5)

The fit is shown in Fig 27 and values and uncertainties for the fitted variables are given
in Table 2. The fit gave fit statistics of χ2 ≈ 837, χ2

ν ≈ 96, and R ≈ 0.0059. The structural
values for distances and coordination number are consistent with the known crystal structure
of FeO, though the Fe-O distance is a bit shorter than expected, and the Fe-Fe is a bit longer
than expected, both suggesting that there may be some contamination of a ferric iron phase
in the sample. The fits are shown in Fig 27, and individual contributions to the total best-fit
spectrum are shown in both k- and R-space in Fig 28. An important aspect of using fitting
techniques to model experimental data is the ability to compare different fits to decide which
of two different models is better. We will illustrate this by questioning the assumption in the
above the model that the E0 parameter should be exactly the same for the Fe-O and Fe-Fe
scattering path. Changing this model to allow another variable parameter and re-running
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Figure 28: Contributions of the first and second shell to the total model fit to the Feo
EXAFS. On the left, the fit (red) matches the data (blue) much better than in Fig. 26.
Note that, compared to the Fe-O contribution the Fe-Fe contribution has a shorter period
corresponding to longer interatomic distance, and has magnitude centered at higher k, as
predicted by the f(k) function shown in Fig. 10. On the right, the |χ(R)| of the contributions
from the two shells is shown. Though there is a sharp dip a 2 Å between peaks for the two
shells, there is substantial leakage from one shell to another.

the fit is straightforward. For this data set, the fit results are close enough to the previous
fit that the graphs of χ(k) and χ(R) are nearly unchanged. The newly refined values for
the parameter are given in Table 3. Compared to the values in Table 2, the results are very
similar except for the values of E0 and a slight increase in uncertainties.

Table 3: Best values and uncertainties (in parentheses) for the refined first (Fe-O) and
second (Fe-Fe) shells for FeO for a model just like that shown in Table 2 except that the 2
values for E0 are allowed to vary independently.

Shell N R (Å) σ2 (Å
2
) ∆E0 (eV)

Fe-O 5.3(0.6) 2.12(0.01) 0.013(.002) -0.7(1.2)
Fe-Fe 13.3(1.3) 3.08(0.01) 0.015(.001) -1.5(0.8)

The fit statistics for this refinement are χ2 ≈ 811, χ2
ν ≈ 105, and R ≈ 0.0057. Since

both χ2 and R have decreased, the model with 2 independent E0 values is clearly a closer
match to the data. But we added a variable to the model, so it is reasonable to expect that
the fit should be better. But is it better enough to justify the additional variable? The
simplest approach to answering this question is to ask if χ2

ν has improved. In this case,
it has not – it went from roughly 96 to 105. Since these statistics all have uncertainties
associated with them, a slightly more subtle question is: what is the probability that the
second fit is better than the first? A standard statistical F -test can be used to give this
probability, which turns out to be about 32% for these two fits (that is, with Nind = 15.7,
χ2 ≈ 837 for 8 variables and χ2 ≈ 811 for 7 variables).

Another way to look at this is to ask if the added variable (E0 for the Fe-Fe shell) found
a value that was significantly different from the value it would have otherwise had. The two
values for E0 in the “2 E0 model” are noticeably different from one another – approximately
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at the limits of their uncertainties – but both are consistent with the value found in the
“1 E0 model”. This also leads us to the conclusion that the additional variable E0 is not
actually necessary for modeling this data.

We’ve seen that structural refinement of EXAFS data can be somewhat complicated,
even for a relatively straightforward system such as FeO. Many real systems can be much
more challenging, but the fundamental principles described here remain the same. The
ability to alter which of the physical parameters describing the different paths in the EXAFS
sum are independently varied in the refinement, and test the robustness of these, can be
especially important for more sophisticated analysis. One way to think about this is that
in the first version of the above example, we used the value of one variable for two different
path variables – E0 for the Fe-O and Fe-Fe paths, and then demonstrated that using one
value for these two physical parameters was robust. That would be the simplest possible
type of placing constraints on an EXAFS analysis, and it had the noticeable advantage of
improving the fit because it used fewer independent variables. For a mixed coordination
shell, perhaps a mixture of Fe-O and Fe-S, one may want to include paths for Fe-O and Fe-S
and ask the model not to simply refine the weight of each of these independently but rather
to ask what fraction of the Fe atoms are coordinated by oxygen. To do this, one would vary
the fraction xFeO as a pre-factor to the amplitude term for the Fe-O path and constrain the
coordination number for the Fe-S path to use 1 − xFeO. More complex constraints can be
imposed when simultaneously refining data from different edges or different temperatures
measured on the same sample. In a sense, the use of multiple paths for different parts of
the R range for χ(R) in the fit above is merely the starting point for thinking about how
different contributions can be put together to make a model for a set of data.

The basic formalism for modeling EXAFS data has been given, based on the Path expan-
sion, theoretical calculations of the contributions for these paths, the Fourier transform, and
a statistical understanding of the information present in a real EXAFS spectrum. We have
illustrated a simple approach to refining a structural model using EXAFS data, and used
statistical methods to compare two different candidate models. Finally we have outlined
the route forward to building models for more complex EXAFS data.

Two distinct and essential challenges exist for EXAFS analysis. First, the complexity of
the theoretical calculations for photo-electron scattering in make it difficult to get theoretical
scattering factors f(k) and δ(k) that can match the accuracy of measured EXAFS data.
By itself, this has proven to not be a serious problem, as the EXAFS literature is full of
examples showing the accuracy of the results from EXAFS despite the imperfect theoretical
calculations. Second, the limited information contained in a finite EXAFS spectrum coupled
with the number of scattering paths needed to model real systems makes building and testing
realistic models for complex systems challenging. Progress in analytics tools for EXAFS
continues to make the building and testing of such models easier and more robust, but
it still requires a fair amount of expertise and care. Despite the challenges, EXAFS has
been proven to give reproducible and reliable measures of the local structure around selected
atoms that cannot be obtained in any other way, and the number of scientists using EXAFS
in mature and new and exciting fields continues to grow.
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